The thesis addresses a number of critical problems in regard to fully automating the process of network traffic classification and protocol identification. Several effective solutions based on statistical analysis and machine learning techniques are proposed, which significantly reduce the requirements for human interventions in network traffic classification systems.
Language
eng
Field of Research
080303 Computer System Security 080503 Networking and Communications
Socio Economic Objective
890202 Application Tools and System Utilities
Description of original
IX, 149, xviii pages : diagrams, graphs, tables, some coloured
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.