Herein, waste dyed wool was transferred into wool powder (WP) using a mechanical pulverization process. This powder benefits from the rich exposed functional groups and porous structures, which endow WP with capacities to adsorb odor molecules. WP milled for 6 h exhibited improved properties including homogeneous surfaces, small mean particle size (3.63 μm) and increased surface area, contributing to its highest odor ammonia adsorption capacity (2.65 mg g−1) and removal rate (91%) among all tested samples. Loading with WP endows cotton fabrics (CF) with greatly improved deodorizing properties and vivid color. WP-coated CF displayed improved ammonia removal properties compared to pristine CF, achieving 65.71% adsorption rate. The K/S value of WP-coated CF reached 1.844 at o.w.f.% of 15. Coated fabrics also showed stable color fastness to washing. This study paves the way for using powders from waste as both odor adsorbent and coloring pigment for fabric functionalization.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.