DOCUMENT
1/1
Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 Deficiency
journal contribution
posted on 2020-02-01, 00:00 authored by Harrison BurginHarrison Burgin, Matthew McKenzieMatthew McKenzieMitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β‐oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short‐chain enoyl‐CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1‐deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1‐deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.
History
Journal
FEBS LettersVolume
594Issue
4Pagination
590 - 610Publisher
WileyLocation
Chichester, Eng.Publisher DOI
Link to full text
ISSN
0014-5793eISSN
1873-3468Language
engPublication classification
C1 Refereed article in a scholarly journalUsage metrics
Read the peer-reviewed publication
Categories
Keywords
Science & TechnologyLife Sciences & BiomedicineBiochemistry & Molecular BiologyBiophysicsCell BiologyECHS1 deficiencyenoyl-CoA hydratase short-chain 1fatty acid oxidationmitochondrial diseaseoxidative phosphorylationOXPHOSFATTY-ACID OXIDATIONCOA DEHYDROGENASE-DEFICIENCYMITOCHONDRIAL BETA-OXIDATIONCHAIN ACYL-COENZYMELEIGH-SYNDROMEPYRUVATE THERAPYOMEGA-OXIDATIONSKELETAL-MUSCLEDISEASEDISORDERS